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ABSTRACT

This report presents a comprehensive summary of a number of methods used in
filtering narrowband jammers and interference out of direct sequence spread spectrum
communication systems. The basic concept is presented first followed by a discussion of
several analog techniques for interference suppression. Most of the emphasis is on digital
adaptive methods, which rely on adaptive filtering algorithms. Many of these algorithms
are highlighted. This is followed by a discussion on the research which has been conducted
in digital excision over the past several years. Two cases based on the author's work are
also presented. The first details the performance one can expect from the recursive least
squares algorithm when the interferer is a stable tone. An analytical model, which predicts
the bit error rate performance for the recursive algorithm under certain conditions, is
derived. This model is compared to results obtained from computer simulation. The
second case compares, through computer simulation, the tracking and filtering capabilities
of the block and recursive least square algorithms when the interference is of the FM-type,
i.e., a swept tone having a bandwidth which is approximately 20% of the chip rate.

RESUME

Ce rapport pr6sente un sommaire complet de plusieurs m6todes de filtrage de
brouillage et d'inter~rences h 6talement de spectre utilisant la modulation directe par
sequences pseudo-al~atoires. On pr~sente d'abord le concept de base et ensuite, une
analyse de plusieurs techniques analogues de suppression d'interf~rence. L'accent est mis
sur des m~thodes adaptable numriques reposant sur des algorithnes de filtrage adaptable
dont plusieurs sont d~crits bri~vement. On poursuit par une revue de la recherche effctu~e
en excision num~rique au cours des derni~vement. On poursuit par une revue de la
recherche effectu~e en excision num~rique au cours des derni~res ann~es. Deux cas tires des
travaux de l'auteur sont pr~sentds. Le premier cas d~crit les performances que l'on peut
esp~rer d'un algorithme r~cursif h variance minimale lorsque l'interf~rence est une
fr~quence continue stable. On en d6rive un module analytique qui, sous certaines
conditions, pr~dit les performances en terme du taux d'erreur des bits. Ce module est
compar6 des r~sultats obtenus d'une simulation par ordinateur. Pour le second cas, on
compare l'aide d'une simulation par ordinateur, les capacit~s de filtrage et de poursuite
d'un algorithme r~cursif h variance minimale et d'un algorithme de bloc pour des
interferences de type FM, i.e. uwie modulation de fr~quence en dent de scie dont la bande
passante est d'environ 20% la fr~quence des sauts de phase.
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EXECUTIVE SUMMARY

This report presents a comprehensive summary of the research which has been
conducted in the area of filtering narrowband interferers out of direct sequence spread
spectrum signals. These signals are used extensively in military communication systems,
especially satellite systems. The techniques described herein apply equially to both
Electronic Support Measure (ESM) systems and direct sequence spread spectrum
communication systems. In the former application, the ESM system may be attempting to
intercept the spread spectrum signal, but the narrowband interference may be hampering
this effort. In the latter application, the spread spectrum communication system may
require additional processing gain to aid in suppressing the interference. Since the open
literature has been devoted to this latter case, the material presented here focuses on this
application.

One of the attributes of direct sequence spread spectrum communication systems is
their ability to combat interference or intentional jamming by virtue of the system's
processing gain inherent in the spreading and despreading process. The interference can be
attenuated by a factor up to this processing gain, Which may be in the range of 20 to 40
dB. In some cases this gain is insufficient to effectively suppress the interferer, leading to a
significant degradation in communications manifested by a sudden increase in bit error
rate. If the ratio of interference bandwidth to spread spectrum bandwidth is small, the
interference can be filtered out to enhance system performance. However, this is at the
expense of introducing some distortion onto the signal. This process of filtering is
sometimes referred to as interference excision.

There are a host of analog and digital techniques which can be used to effect
excision. Three of the more well-known analog methods are described in this report. They
include the use of a notch filter (which may be tunable), phase-locked loops, and surface
acoustic wave devices. The problem typically associated with analog methods is that they
are unable to cope with a changing interference environment. Digital techniques are more
amenable to this situation.

Digital techniques require that the received composite signal, consisting of the
spread spectrum signal, noise and interference, first be digitized. The resulting signal is
then applied to a digital filter which carries out the process of excision. Its filter
coefficients are obtained from an algorithm usually based on a minimum mean squared
error optimization criterion. These algorithms can be of the block or recursive types. The
block algorithms calculate a set of filter parameters from a block of data. This same block
of data is then applied to the filter. The recursive algorithms, on the other hand, update
the filter coefficients every data sample. This report provides a comprehensive summary of
both groups of algorithms.

These algorithms have formed the basis for an extensive amount of research over the
past several years in interference excision. The salient aspects of this research are
pxesetC -n chronological order. The interference conditions included a single tone,
multiple tones, coloured Gaussian noise, a pulsed tone, and in one instance a swept tone.
These include common interference and jamminig signals
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Several filter configurations also evolved over time, commencing with the simple
linear prediction and interpolation filters and branching out into non-linear filters, which
use decision-feedback schemes. The non-linear methods provide a substantial
improvement in performance over their linear counterparts, and approach ideal
performance.

The report concludes with work carried out by the author. Two cases are presented.
The first details the performance that can be expected from the recursive least squares
algorithm when the interferer is a stable tone. An analytical model, which predicts the
bit--error-rate performance for the recursive algorithm under certain conditions, is derived.
This model is compared to results obtained from computer simulation. The second case
compares, through computer simulation, the tracking and filtering capabilities cf the block
and recursive least squares algorithms when the interference is of the FM-type, i.e., a
swept tone having a bandwidth whica is approximately 20% of the chip rate.

The results for this second case show that one does not have to resort to high order
filters to suppress the tone, a second order filter will be equally effective. This reduces the
number of mathematical operations per iteration required for calculating the filter
coefficients. These results contrast those found for the stable tone interferer, in which
increasing the filter order improved the performance of the excision filter.

Finally, for an FM-type of interferer, the recursive algorithms produce a notch
which lags behind the interference. The amount of lag is a function of the parameters used
in the recursive algorithm and the rate of change of the modulating signal in the FM
interferer. These findings have led the author to suggest another scheme to filter such an
interferer. The report concludes with the proposed concept.

Military applications of this work cannot be discussed in this unclassified report.
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1.0 INTRODUCTION

Direct sequence spread spectrum (DS/SS) communication systerns have an inherent
processing gain which has the effect of reducing the harmful effects of interference. When
the interference has a power advantage over the spread spectrum system, a severe
degradation in communication can result as manifested by a sudden increase in the bit
error rate (BER). The processing gain can be enhanced somewhat by filtering the
interference, particularly if it is narrowband. This technique is sometimes referred to as
interference excision.

Several methods of interference excision are presented in this report. First, the
basic concept is described. This is followed by a summary of some of the analog techniqaes
to implement excision filters, which may involve the use of simple notch filters,
phase-locked loops (PLL's), or surfac- acoustic wave (SAW) devices.

Most of the emphasis in this report is on adaptive digital filtering methods based on
time-domain modeling techniques. There are a namber of algorithms associated with these
models, and many of these will be discussed. Following this, the wc.k of numerous
researchers in the area of digital excision will b" summarized. The report concludes with
work conducted by the author on the application of two adaptive algorithms (block least
squares and recursive least squares) to the filtering of stable and swept tones from a binary
phase-shift keyed (BPSK) spread spectrum system.

2.0 BASIC CONCEPT

Consider the received spread spectrum signal of bandwidth B,, = 2R, as shown in
Fig. 1, centered at an intermediate frequency (IF) of fo Hz, where R, is the chip rate of the
spread spectrum signal. Also present in the signal bandwidth is an interferer of bandwidth
Bi << 13, and centered at fo + Af. The interference can be filtered out eith -
at the IF or at baseband. Two possible excision filter configurations are shown in Fig. 2.
Fig. 2(a) illustrates an analog excisor and Fig. 2(b) illustrates a digital one. In these
figures r(t) is defined as

r(t) = s(t) + n(t) + i(t), (1)

where s(t) is the spread spectrum Signal, n(t) is bandpass Gaussian noise and i(t) is the
narrowband interring signal. These three components are further defined as

s(t) = d(t)p(t)cos(oot) (2a)
n(t) V o , n ,(t)2+ ns(t-.-co s[ , t + (t)] (2b3
i(t) =A(t)cos [tO( t)] 2

where d(t) is a random sequence of bits, e-ch of duration Tb seconds arid amplitude (+ 1),
p(t) is a pseudo random sequence of chips, each of duration T, seconds and amplitude
(* 1), wo0 = 2Tfo where fo is the carrier, nc(t) and n,(t) are in-phase and quadrature
baseband Gaussian noise components of variance NoB,, where N. is the single-sided power
spectral density of the noise, 0(t) = arctanrn,(t)/n,,(t)] is the phase angle between the
Gaussian noise components, A (t) is the time-varying amplitude of the interferer, and 0(t)
is the phase of the interferer.
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FIGURE J: SPREAD SPECTRUM SIGNAL OF BANDWIDTH B,, AND NARROW
BAND JAMMER OF BANDWIDTH Bi.
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In Fig. 2(a), r(t) is applied to an excision filter first. The output is despread by
correlating it with the pseuco-nolse (PN) sequence, mixed to baseband and bit-detected.
In Fig. 2(b), r(t) is mixed to baseband first and then applied to an integrate-and-dump
circuit whose output is sampled at the chip rate. The assumption is made that carrier and
chip synchronization have been achieved, which will not be the case initially. The sampled
sequence, x,, is processed by an algorithm which determines a set of filter coefficients for
the excision filter using some optimization criterion. The output of the filter, f,, is then
correlated with the PN sequence and applied to the bit detector.

3.0 ANALOG EXCISION TECHNIQUES

Several analog techniques for suppressing interference in spread spectrum systems
have been proposed [79],[3],[52],[50]. Three of the more well-known methods will now be
discussed.

The simplest method [79] is to apply the received signal to a tunable notch filter of
bandwidth sufficiently large to attenuate the interference. The ,),,tput of the filter will
consist of residual interference, noise and a somewhat distorted signal due to the filtering
operation. This latter effect degrades the correlation of the signal with the PN sequence.
The amount of degradation depends on the desired attenuation and the filter order and
type.

Experimental results of these tradeoffs were presented in [79]. The interference was
a double-sideband suppressed carrier signal occupying a bandwidth equal to 3% of the chip
rate and centered at the carrier of the spread spectrum signal. A second order Butterworth
filter with a 10 dB bandwidth 2.5 times larger than the interferer's 10 dB bandwidth
achieved at least 25 dB interference suppression. The penalty in this case was a 1 dB drop
in the PN correlation peak at the output of the PN correlator shown in Fig. 2(a). For the
same interference conditions and a fourth order Butterworth filter, the degradation in the
correlation peak was 1.75 dB. Results also showed that the amount of degradation lessened
as the interference and notch filter were offset from the carrier. Finally, theoretical curves
indicated that Tchebycheff filters introduced slightly more degradation in the correlation
peak than the Butterworth filters of the same order.

A more sophisticated analog technique [3], illustrated in Fig. 3, uses a PLL. In this
application, the received signal is applied to a PLL of bandwidth B,. For the condition of

large (> 10 dB) interference-power-to-noise-plus-signal-power ratios, the PLL locks on
to the interference. The voltage controlled oscillator (VCO) signal, which is in quadrature
to the interference, is phase-shifted by 7r/2 radians and applied to two mixers Ml and M2.
Ml mixes the received signal r(t) to baseband. The baseband signal, y(t), is applied to a
low pass filter of bandwidth Ba. The output is an estimate of the interference amplitude,

A(t), contaminated by noise and spread spectrum signal. The second mixer M2 mixes the

same r/2 phase-shifted VCO signal from the PLL with A(t) to form an estimate of the
interference, i.e.,

i(t) = A(t)cos['ot + 0(t)] (3)

-4-
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which is subtracted from r(t). An analysis carried out in [3] determined that the residual
interference-to-signal ratio at the input to the spread spectrum processor is (B¢+Ba)/Bss.
This result suggests that, in theory, a significant amount of suppression of the interferer
can be achieved, especially for stable tones in which B, and Ba can be quite small in

comparison with the spread spectrum bandwidth, B,,.

The third analog approach to be discussed implements excision with SAW devices.
This method is referred to as transform domain filtering. A significant amount of research
has been conducted in this area j9],[14],[52]-[55]. The concept is illustrated in Figs. 4(a)
and(b). The received signal is first windowed to Tb seconds by a window function w(t)
which, for example, can be rectangular or Hamming. The windowed signal is Fourier
transformed by the first SAW device. The transform evolves over time, becoming valid
when the windowed signal is fully contained in the device. The transform, therefore, is
valid over the time interval Tb to TI, where T, is the interaction time of the SAW device.
The output of the first device is multiplied by a transfer function, H,(w), which is related
to a notch filter with transfer function HR(w), i.e.,

H,(w) = 4HR(w)cos(wT) (4)

where the cosine term adds a time delay of T, seconds to the input signal (since the inverse
transform calculated by the second SAWV device starts to become valid at T1 seconds). The
frequency variable t,, is a function of time and is equal to 2 t, where #, which is defined
below, is a parameter of the SAW device. As the spectrum evolves over time, the portion
containing the interference is "blanked out" by a gating function represented by H,(w) in
Eq. (4). The shape of H,(6) is rectangular. The notched spectrum is inverse transformed
by the second SAW device. This transform produces a time domain signal of duration Tb
seconds valid over the range [TI,TI+Tt)]. This time domain signal consists of a sequence of
chips which are then correlated with the appropriate section of the PN sequence, shown in
Fig. 4(a) as the spread spectrum processor. The output of this processor is then
bit-detected.

A detailed representation of the above process is illustrated in Fig. 4(b). Within the
dashed lines is the way in which the Fourier transforms are implemented with the SAW
devices. The windowed waveform is mixed with a chirp signal defined as cos(wat - Ot 2)
where w, is the carrier frequency in radians per second and 0 is the phase sweep rate in
radians/second 2 of the chirp. The product is applied to a tapped delay line, constructed on
a SAW device, with an impulse response cos((,,t + Ot2). The inverse Fourier transform is
similarly ccnstructed. The PN correlation process at the output of the second SAW device
is represented in Fig. 4(b) as a filter with impulse response s(Tb - t). This is the matched
filter (code sequence) for the particular bit, and is an alternate representation for the
correlation process which was shown in Fig. 2(a) [83].

Milstein and Das 53] have used the model in Fig. 4(b) to develop a test statistic
[83] at the output of the bit detector. This test statistic is defined as

Tb

U f r(t)[hR(t)*s(t)]dt (5)

0

-6 -
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where h(t) = -1{HR(W)}, Y-1 refers to the inverse Fourier transform and * refers to the
convolution operator. From the mean and variance of U for a given interference and
filtering condition, a theoretical bit error rate expression can be determined. Milstein et al.
presented results for two such cases, i.e., a tone interferer and Gaussian noise jammer.
They also presented an adaptive scheme with supportive experimental results [78].

As a perspective on the performance of such a SAW excision system, and the
parameter values which are achievable, one can refer to the experimental system in [67].
The SAW devices used therein had center frequencies of wa = 2r(15MHz), bandwidths of 7
MHz, interaction times of T, = 117 /sec., and chirp rates of

= 2r(3 x 1010) rad/sec2 . The spread spectrum code used for the experiment was a PN
sequence of length equal to 63 chips. Furthermore, all 63 chips were contained within an
information bit, thus providing a processing gain of 63. The chip rate of the PN sequence
was 1.875 MHz.

For a single tone interferer which was offset from the carrier by 180 kHz, and an
interference-to-signal (I/S) ratio of 20 dB, the bit error rate (BER) for an energy per
bit-to-noise power spectral density ratio (Eb/No) of 10 dB was 8 x 10-s when the excision
filter was present. Without the filter the BER was 0.5. The theoretical BER for BPSK
systems without interference is 4 x 10-6.

4.0 DIGITAL EXCISION TECHNIQUES

In Section 2.0 a digital approach to interference removal was depicted in Fig.
2(b). With respect to this approach, this section focuses on three areas: (a) the
time-domain algorithms that can be used to calculate the filter parameters; (b) a review of
the research which has been conducted in digital excision; and, (c) results obtained by the
author on the problems of filtering stable and swept tone interferers. The signals in the
sequel are all considered to be real.

4.1 Preliminaries

The time-domain algorithms referred to in Fig. 2(b) are based on time-modeling of
stochastic processes. A well-known model [4],[27] is one in which the sampled signal xn is
modelled as a pth order stationary autoregressive (AR) process defined as

Xn + alx--1 +....+ apXrp = wn (6)

where w, is white Gaussian noise of variance 0,,2. An AR process can be generated by
passing samples of white Gaussian noise through a digital filter with a transfer function
defined as

H(z) = 1 1 (7)

1 + a1z-1 +..... + apz-p A(z)

where p is the order of the filter.

For the moment, assume the objective is to whiten or, alternatively, to decorrelate a
received set of samples obtained from a zero mean, stationary, pth order AR process. In

-8-
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addition, assume that the second order statistics of the process are known. To whiten the
signal, the set of parameters {ai, i=1,2,... ,p} must be determined, and a transversal filter
with transfer function A(z) constructed with the ai as tap weights. The data xn could then
be passed through this filter whose output would be a white noise sequence. This is
illustrated in Figs. 5(a) and (b). The parameters of the whitening filter A(z) can be
determined in a straightforward manner by employing linear prediction concepts and the
orthogonality principle [62].

The one step linear predictor is defined as

xn = alx-, + a 2x,_2 ..... + apXp. (8)

The objective is to find those parameters ai which will minimize the mean squared error,
E{fn2J, where fn is the forward prediction error xn - i,. The best estimate in a minimum
mean squared error (mmse) sense is the one producing an error orthogonal to the data used
in estimating x, ,i.e.,

E{fnx,_i} = 0, i=1,2,. -,p. (9)

Substituting fn = xn - xn into Eq. (9) leads to the following p equations known as the

Yule-Walker equations, i.e.,

ri= ari-1 + a2ri-2 + . .. + apri-p, i=1,2,. • ",p (10)

where ri = E{xxix_} is the ith lag from the discrete auto correlation function of the AR
process Xn. This series of equations can be written in matrix form, i.e.,

R (11)

where R is a pxp Toeplitz matrix whose elements are constant along the diagonals, i.e.,

r0  rI ......r.1

r1  r0  rl... rR 2

R= (12)

Also

a = [a a2 .... a)]t  (13)
and

[r= Jrr3 .... r]t (14)

where the superscript "t" refers to the transpose of a matrix. Equation (11) is known as
the Wiener-Hopf equation.

The solution to the Wiener-Hopf equation involves the inversion of the matrix R.
It can be solved by several standard techniques, such as Gaussian reduction or Cholesky

- 10-



decomposition. The number of mathematical operations required to obtain the inverse by
these methods is p3/3 + O(p2 ) and p3/6 + O(p2 ), respectively. The term 0( ) refers to "in
the order of" ( ) operations, where an operation is defined as a multiplication or division
plus an addition or subtraction.

Alternatively, taking advantage of the Toeplitz structure of R, Eq. (11) can be
solved most efficiently by means of the Levinson-Durbin (LD) algorithm [37] in O(p2)
operations. This algorithm not only solves for the pth order equation, but also the lower
order ones as well, i.e, for {i = 0,1,. ... ,p-l}. It is therefore an order recursive algorithm.
It also solves for the minimum mean squared error, Emin('), (defined also as ai2) for the ith
order. The orthogonality principle yields

£M = E{f,.xn} (15a)

i
= r0 - Iakrk (15b)

k=1
= ui 2. (15c)

The LD algorithm is listed in Table 1. It proceeds recursively to compute the
parameter sets {al(1)u1

2}, {al(2)a2(2)022}, .... ,{al(p)a 2(p).... , ap(P)up2}. Note that a superscript
has been added to the AR coefficients to denote the order. The final set
{a1 (P)a2 (P) .... ,apip)ar2 } is the desired one and is used in the whitening filter in Fig. 5(b).
The AR sequence xn can then be applied to the filter to yield a white scquence, fn,, with
variance g p2 = g w2.

The LD algorithm also implicitly calculates the parameters of a lattice filter
[45J,[46] as shown in Fig. 6. The coefficients of the lattice structure are the parameters
aii)= Ki , i=1,2,. • - ,p. It can be shown that these parameters are less than one for a

stationary process [61], and that this property immediately indicates that the roots of A(z)
lie within the unit circle, which alternatively means H(z) in Eq. (7) is a stable filter.

Table 1

Levinson - Durbin Algorithm

Initialization

a0 ) - ri/ro
-"1

2  (1 - (a1('))2)ro

Repeat for k=2,3, .... ,

k-1

ak(k) = rk - 'a(k-I~rk_}

k- i=1
ai(k) = ai(k-1) - ak(k) ak-I(k'l), i=1,2,. • • ,k-1
Uk2 = (1- (ak(k))2) k-i2.
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The lattice filter is an interesting structure in that it contains the transfer functions
of all lower order filters, i.e., AI(z), A2(z), . %,Ap(z), as well as the forward prediction
error sequences {fin, i=1,2,. •. ,p} for each of these sections. For the pth order AR process
under consideration, only the output sequence of the pth stage fpn will correspond to the
minimum mean squared error sequence. Another important point is that the lattice filter
provides as a by-product a set of backward prediction errors denoted by {bin, i=1,2,. .•,p}
and defined as

b n -= - ak()x,,ik i=1,2,...,p. (16)

k=1

The backward prediction error is the difference between x-., and a weighted sum of i future
samples {xr-i+I)xn-i42,. ,x.J. For completeness, the forward prediction errors are written
as

= Xn- ak"'X,-k i=1,2,- ,p. (17)

k=1

From the lattice structure, another definition for the forward and backward prediction
errors is

fi.n= fi-.n - Kibi- n-I (18a)
bin= bi-ln-I - Kif 1l11. (18b)

The backward prediction errors from each section of the lattice structure are orthogonal to
one another. This is because the lattice can be viewed as carrying out a Gramm-Schmidt
orthogonalization process [21] on the data x,,.

This latter property of the lattice can be appreciated by considering Eq. (18b).
Assume bi-,,,, and fi-.,, {i=1,2, ,p} are two vectors with an arbitrary angle 0 between
them (in statistical terms, this implies they are correlated). The objective is to produce a
new vector bi,n which is orthogonal to bi-,,,,, by linearly combining bi-,,, and fi-ln (in
statistical terms, this implies the removal of the correlated portion of fi-,n from bi-.- 1).
The parameter Ki is the cosine of the angle between fI-,, and bi-.r,- and is equal to [29]

K, = -(19)

I E { f ~ i . 2 1 E J b i -, , 2 }
Finally, the lattice parameters Ki are referred to as reflection coefficients because of

the application of lattice filters to speech processing. The lattice is a model for the vocal
tract, where each section of the lattice filter represents one tubular section of a certain
cross sectional area of the tube [47]. As the acoustic wave propagates along the tract,
portions of the wave are reflected at boundaries having different cross sectional areas. The
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amount of reflection at these boundaries is measured by K1. Thus, in analyzing speech
waveforms, the Ki can be used to characterize a particular speaker.

To this point, the solution to the Wiener-Hopf equation has been discussed for the
casc when the statistics of the process x,, are knou n. In practice, these statistics are
unknown. The next two sections discuss practical solutions.

4.2 Block Least Squares Algorithms

In the practical situation, only a sample realization of x, is available. The sequence
of samples may have been generated by an AR process, or from any unknown process which
had been assumed to be AR. Furthermore, only a finite set of samples are available. The
problem of determining an optimum set of coefficients {a1 , i = 1,2,. • •,p} resides in the
area of linear least squares theory [1],[34],[44]. These coefficients are obtained by solving a
series of equations that arise from a model which is similar to the AR process discussed
earlier, i.e., each sample within a block of received samples {x,, n = 0,1,.... ,T} is equal to
a linear combination of the p most recent samples plus some error, i.e.,

Xn = alxrkl.1 + a2x,, 2 -4 ..... + a,,X)-, + f,,. (20)

The error fn is usually assumed to be white noise with Gaussian statistics. In Eq. (20), it
has been assumed that the data has been fully windowed, i.e., Xn = 0, n < 0 and
n > T, as shown in Fig. 7. Pre-windowed and non-windowed cases are also shown. These
latter two cases will be discussed later.

Equation (20) is closely related to the AR process discussed earlier, except that the
samples are deterministic values. Given the data, the objective is to determine the set
{ai, i=1,2,.... ,p} which will minimize the sum of squared errors between the estimate
based on a weighted sum of past values, i.e.,

x:=alx,- + +... ±a ~x ,N (21)

and x,. For the fully windowed case, the following equations are obtained, written in
matrix form:

f0 x0 0 0 ... 0 a
f, x1 x 0 ... 0 a2

fXT XT-1 X T-1
fT.I 0 XT XT- XT- I-" (22)
fT~p 0 0 0... 0 XT  ap

In matrix notation, this becomes

e = x-Xa. (23)

where X has a Toeplitz structure. The optimum solution in a least squares sense is the one
producing a vector e orthogonal to the column space of X (see Ref. [1]). In other words, if

- 1 4 -



Windowed

U n

.P 0 1 T T~p

Non-windowed

Pr-wlndowed

FIGURE 7: THE EFFECTS OF THREE WIN DOWN TYPES WHICH CAN BE
IMPOSED OIN THE DATA.



the columns of X are considered as vectors in an N-dimensioial Euclidean space (N =
T+p+l), and these p vectors form a sub-space within this N-dimensional space, then the
optimum solution is that vector which minimizes the norm ete. For this to be true, e must
lie in the sub-space orthogonal to the sub-space created by the columns of X. Therefore,
the optimum solution can be obtained from

Xte= 0. (24)

Substituting for e in this equation, we obtain the following:

Xt[ x - Xa I = 0 (25a)

XtXa = Xtx. (25b)

This is equ'valent to la = i where f = XtX and _ = Xtx and are, respectively, estimates

of R and r in Eqs. (11) and (14). For the fully windowed case, ft is a pxp Toeplitz matrix,
so that the LD algorithm can be used to solve for a. (Note, however that for an

overdetermined set of N equations in p unknowns, forming ft and i requires 0(Np 2/2)
operations, which can consume most of the computational effort for large N.)

If the data are not windowed, so that no assumptions are made about the data
outside the bloc' collected (i.e., the nonwindowed case, as shown in Fig. 7), there are
several approaches to solving the problem, depending on th- assumptions that are made
about the data (stationary or non-stationary), whether or not the roots of A(z) are
required to lie within the unit circle, and general performance requirements. Three
approaches will be discussed.

ADproach I

This is the simplest of the three approaches. The problem involves minimizing the
sum of squared forward prediction errors. The matrix equation of interest is

f p X I) X j.1  X t 2  X ^ • a ,X

(26)

L T X XT-1 1 -T-p

Applying the same reasoning that was used in determining the optimum solution for Eq.

(22), one obtains a matrix R which i no longer Toeplitz, so that the LD algorithm cannot
be applied. Furthermore, the solution may not yield a filter with roots inside the unit
circle. Although tho efficient LD algorithm cannot be applied here, efficient algorithms
nave been developed [28],[57] to provide a soliution requiring 0(p 2) operations.

One can derive a lattice structure (shown in Fig. 8) from the algorithm described in
[57]. The reflection coeffic'ents in the forward and backward branches of each section (Kif
and Kib) are not necessarily equal, and their magnitudes are not necessarily less than 1.
This latter property can be used to determine whether or not the roots of A(z) are within
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the unit circle. As shown in [76], these parameters are bounded according to the relation
0 < KifKib < 1. Finally, the degree of disparity between Kif and Kib is a measure of the
amount of non-stationarity in the data [19].

Approach 2 (Burg's Algorithm)[5],[60]

The assumption is made that the process is stationary. Furthermore, it is required
that the roots of A(z) be within the unit circle and that only the available data be used
(i.e., the nonwindowed case). With these requirements, Burg developed an algorithm in
which he suggested that the sum of squares of the forward and backward prediction errors
be minimized with respect to the reflection coefficients {aii) = Ki, i=1,2, .. ,p}, i.e.,
minimize

T

E= I [ fi.2 + b1,. 2 ), i= , p ,. (27)
n=i

The choice of Eq. (27) is based on the stationarity assumption for which the statistics of
the forward and backward prediction errors are equal. Also, minimization of this equation
with respect ot the ith stage reflection coefficients is equivalent to a local minimization of
each stage of the lattice [45]. A local minimization of each section leads to a global
minimization of the entire lattice. If one substitutes Eqs. (18a), (b) into Eq. (27), one
obtains £i as a function of Ki. Taking its derivative with respect to Ki, and setting it equal
to 0, yields the optimum solution for Ki, i.e.,

T

2 , fi-1.k bi-1k-1

Ki k= , i=1,2,. .,p. (28)

I ( f1 - 'k2 + bi-l.k-12)

Equation (28) is the deterministic form of Eq. (19) for stationary processes. The Burg
algorithm can be viewed as a solution to a constrained least squares problem, where the
constraint is the imposition of the lattice structure in Fig. 6 on the data as opposed to the
least squares structure in Fig. 8. This in turn forces a Toeplitz structure on the
autocorrelation matrix.

The initial conditions for the algorithm are fOn = bc,,, = xn. With this initial
condition, K, = aj ') can be calculated from Eq. (28). The block of data is passed through
the first order lattice filter to produce the sequences fLk and b.-1, from which a2(2) is
determined, and so forth. After Kp is calculated, one can determine the coefficients
{ aip), i=1,2, .... ,p} using the LD recursion if the power spectrum of the sequence x" is
required. An analysis of the computational complexity of the Burg algorithm [29] indicates
that 3Np - p2 - 2N - p adds, 3Np - p2 -N + 3p multiplications, and p divisions are
required where N = T + 1. Storage of 3N + p + 2 values is also necessary.
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Approach 3

The constraint imposed on the data in the Burg algorithm has led to certain
problems in its application to spectral estimation, such as spectral line splitting and biases
in the frequency estimate [29],[48],[49]. These problems can be mitigated if E, in Eq. (27) is
minimized with respect to all coefficients {ak(P), k=1,2, .... ,p} [2],[48],[601,[821. For the
derivation of the solution, the forward and backward prediction errors are required:

fp Xp Xp4 XR.2 -. .0 a I
f 1 . - Xpx1 XP x -1  "' a 2  (29a)

fT J XT J XT-I XT. 2  XT- p  ap

boXO X I X2 .. XP a1 I
b = x I X2  X 3 Xp, a2 (29b)

bT p J T-p J XTpl XT-.p2 " XT J ap J

These equations can be rewritten as

ef = xf - Xfa (30a)
9b = _lb - Xt. (30b)

The objective is to minimize

Ep = eftf _ eteb (31)

with respect to the set {akP" k= ,2 .... ,p}. This can be achieved by rewriting the

prediction error equations as e = x - Xa, where

e = ebf (32a)

x= [ 2; (32b)

x,= [ . (32c)

With these definitions, the solution is obtained from

XtXa = Xtx. (33)

An order recursive algorithm has been developed by Barrodale and Erickson [2], which
utilizes the Cholesky decomposition method and certain shift invariant properties
associated with the matrices XtX and Xtx. The approach has good numerical qualities.
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Marple [48] has also developed an efficient algorithm. The computational complexity of
this latter algorithm for N = T + 1 is Np + 8p2 + N + 7p - 8 additions, Np + 9p2 + 2N +
2 5p - 3 multiplications, and 5p +3 divisions. The algorithm needs N + 4p + 15 computer
memory locations.

Remark

In approaches 1 and 3, it has been tacitly assumed that the inverse of XtX exists,
i.e., it is of full rank. In many applications this will not be the case, particularly if there
are fewer equations than unknowns (the under-determined case). For this case an infinite
number of solutions for a exist which will minimize the mean squared error. Of this set of
solutions, the one with minimum norm is typically selected. To obtain the minimum norm
solution, the Moore-Penrose pseudo inverse [1] of XtX must be determined.

4.3 Recursive Algorithms

In the previous section a number of block structured algorithms were discussed
regarding the solution to the Wiener-Hopf equation. These algorithms led to transversal
or lattice filter structures. Furtherm ie, with deterministic data, the problem was recast
into a least squares one, in which the Wiener-Hopf equation was comprised of sample
values of the process.

In this section, recursive solutions to the WXiener-Hopf equation will be considered.
In particular, stochastic gradient and recursive least squares algorithms for both the
transversal and lattice structures will be discussed.

4.3.1 Stochastic Gradient Algorithms

The objective of the stochastic gradient approach is to make small adjustments to
the filter coefficients in such a manner as to minimize the mean squared error between xn

and in. The adjustments to the filter coefficients are a function of the gradient of the mean
squared error, which can be viewed as a multi-dimensional paraboloid with a unique
minimum. This minimum point is sought by the algorithm by adjusting the coefficients in
a direction opposite to the gradient.

Gradient algorithms have been developed for transversal and lattice structures.
Both structures will be discussed, with the former structure being used to present the basic
concept behind the gradient techniole.

Transversal Structure

If the statistics of the process are known, the recursion for updating the filter
parameters is the following [84]:

aT-1 = AT-P(VE{fp.T2}) (34a)

= AT + A(r - Rar) (34b)
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where a1 = [alT a2,T ... apT]t, T is the time index, p is a small positive constant which
determines the rate of convergence of aT to its optimum value aopt, and V is the gradient
operator, i.e.,

dlda2
d/aa2 v = .(35)

[ 8/eoa J

The constant u must be selected within certain bounds to ensure convergence of the
algorithm to the optimum solution. The bound is defined by 0 < ;L < 2/Amax where A..ax is
the maximum eigenvalue of the auto correlation matrix of the process.

Practical implementation of the algorithm involves approximating r and R in Eq.

(34) by iT and faT-1 at time T, where

XT- I

XT- 2

rT = XT . = XXTI, (36)

XT-p

and RT- = XT-,XT-j t . After substituting iT and RT-I into Eq. (34b), the update equation for
the taps of the transversal filter becomes

AT-l = 4T + PfpT2 T-I (37)

where

frT = XT - aTtXT-1. (38)

It should be noted that the term f1 ,)TXT-i is a noisy, unbiased estimate of the gradient
E{fp,TXT-1}. Eq. (37) is often referred to as the W idrow-Hoff LMS algorithm.

Remarks

(1) With the above approximation, the gradient is noisy; however, E{aT} - aopt if the
condition 0 < p < 2/0m,, is met.

(2) The tap weights fluctuate about a,,t. The degree of fluctuation is a function of the step
size p. Small y implies averaging over more past data and therefore the variance of the
fluctuations is smaller. The cost is a slower convergence rate.

(3) Tap weight fluctuations lead to an excess error in steady state. Thus the mean squared
level of the output error sequence fp, W is larger than the minimum achievable. This leads to
an excess mean squared error.
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(4) The average mean squared error converges to its steady state value if and only if thestep size parameter u satisfies the condition

< ro < 2 2 (39)

p pro

i=1

for a stationary process where r0 is the power in the signal. If this condition is met, the
LMS algorithm is convergent in the mean square. This imposes a tighter bound on p.

(5) In certain applications such as speech processing, where power levels can fluctuate
significantly, the LMS algorithm can become unstable. In these cases the step size p is
usually made a function of time [23]. One possibility is [22]

T = a (40)

Pr 0,T

In Eq. (40) 0 < a < 2 and 4Tw is an unbiased estimate of the power in the sequence XT, i.e.,

rOT = (1- )O.T1 + ftT2 (41)

where 0 < fi < 1 and i0.-I is an estimate of the initial condition for ro at T = -1.

(6) The rate at which the LMS algorithm converges to the steady state value is dependent
on the eigenvalue spread. It has been determined [16],[20] that the overall time constant 7a
for any tap weight ai is bounded by the relation

-1 -1 (2
ln(1 -A max) <Ta 7 ln(1l ) (42)

(7) The LMS algorithm can track processes which are non-stationary. The degree of
success in its tracking capability is a function of the amount of non-stationarity in the
process, the eigenvalue disparity and the step size u.

Lattice Structure [17],[16],[23]

The derivation of the gradient adaptive lattice algorithms is similar to the method
used to derive the LMS algorithm, except that the gradient is applied to each reflection
coefficient. There are two approaches which can be taken. If the data are assumed to be
nonstationary, then the forward and backward reflection coefficients Kif and Kib are chosen
to minimize, respectively, the mean squared errors E{fi.T} and E{bi,w2} of each lattice
section. The statistical update equations are

KIT,, f = Ki.Tf - j piVfE{bi.T2} (43a)
Ki.TIb = Kiwb - 2 ji1 'V'E{f1 2} (43b)
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where pif and Uib are the step sizes for the ith section, and Vf and Vb are the
one-dimensional gradient operators, 8/ K f and 8/8Kib, respectively. After substituting
for fiT and biT from Eqs. (18a),(b) into Eqs. (43a),(b), taking the derivative and
approximating the expectation operator by the instantaneous values, the following
approximate gradient equations are obtained:

K1=w-1f = Kiwf + Piffi-1wbi.w (44a)
Ki,Tlb = KiTb + Aibfi,Tbi_1,Tl. (44b)

The second approach assumes the data are stationary, implying that Ki f = Kib =
Ki. The objective is to find that Ki which minimizes the sum E {fiT2} + E{bi.T2}. The
approximate gradient equation is

KUw,1 = Kiw + Ai[ fiwbi-IW-1 + f-l.TbiT]. (45)

Remarks

(1) The gradient lattice algorithms converge to the steady state faster than the LMS
transversal algorithm [121,17],[23] for the case in which there is a large spread in the
eigenvalues. This is because the lattice algorithm has more degrees of freedom in adjusting
its parameters; it has at least one convergence parameter 'U for each section. This should
be compared to the LMS algorithm, in which there is only one parameter for the entire
filter.

(2) The step size can be power normalized, in a manner similar to that for the LMS
algorithm [17],[23]. For example, in Eq. (45) normalization is of the form

iT = 1/0i.T2 (46)

where

LT 2= (17f) -I.T_2 + 43[ fiT 2 + biT_12  (47)

and 0 < 0 < 1.

(3) The gradient lattice algorithm is considerably more difficult to analyze than the
radient tr nsversal algorithm because of the highly nonlinear nature of the adaptation
i.e., each section converges at a different rate). It'has been found empirically [23] that for

the power-normalized case and the stationary form of the lattice structure, stabilization

will be maintained if 0 < 1/&i2 < 1.

4.3.2 Recursive Least Squares Algorithms

In this section the pre-windowed (Fig. 7) recursive least squares algorithm [7] will
be discussed. The non-windowed case has a recursive solution as well, albeit the algorithm
is more complex and requires a more sophisticated start-up procedure
[I21413),[[35,4411,[64).
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The matrix equation for the pre-windowed case at time T is

fo x 0  0  0 ... 0 a,
f0 = xi x 0 0 ... 0 a 2  (48)

fT XT XTJ XT.2 o o o XTp - ap

The optimum solution for apT for a block of data where T > p can be solved using, for
example, the generalized Levinson recursions in [57], modified for pre-windowed signals.

The major computational burden associated with block methods of computing the

optimum coefficients is the matrix R = XtX, as noted earlier, when the number of samples

is large. Furthermore, it must be recomputed when the least squares estimate is to be
updated when a new data sample arrives, i.e., as T increases. A number of algorithms over
the years have evolved which address these problems.

The first algorithms were recursive in time for a specific filter order. The original
one [15], based on a Kalman filter model of the least squares problem, required 0(p2 )
operations per time update. A more efficient method [11],[36] known as the fast Kalman
algorithm was developed requiring 0(8p) operations per update for AR modeling. The
number of operations was reduced to ((5p) by the FAEST algorithm [6],[7] i.e., fast a
posteriori error sequential technique, and FTF algorithm [8], i.e., Fast Transversal Filters
algorithm. The fast Kalman and FAEST algorithms will now be discussed.

The optimum solution at time T for a pt', order system, derived from Eq. (48), is

obtained from RT-@T == T where

T-1
IT-1 = i t  (49a)

i=O
T

iT = I Xixi-it (49b)

i=0
X = [Xi Xi.....x hl)It. (49c)

The problem is to determine aT.I when the sample XT1 arrives. The key to the development

of a sequential algorithm is the existence of simple time updating formulas for 1tT and T.1

in terms of fw-1 and T, respectively, and the most recent data fXT-1,XT). These update
formulas arise from the Toeplitz structure of the data matrix X in Eq. (48). Using these
updating formulas [57], it can be shown that the linear prediction update equation is of the
form

aT.J = aT + RT -' TffI.J (50a)
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= AT + KGTf,T*I. (50b)

where KGT is referred to as the Kalman gain vector and fq,T-1 is the a priori error defined as

fr I = XT-! - atXT. (51)

It is sometimes referred to as the predicted error since the prediction of XT,, namely ATtT,
is based on the tap weight vector at time T, not T+1. The fast Kalman algorithm [11],

6] is a series of operations per time step concerned with updating the Kalman gain vector
G,T.

With some modifications to the fast Kalman algorithm, the FAEST algorithm [6],
[71 was developed using an alternative formulation, which had the effect of reducing the
number of operations required to update the Kalman gain vector. The update equation in
this case is

AT+l = aT + RT-l-IXTfpT+l (52)

aT + KGrTfp.T.,

where KGT is the alternative Kalman gain and

fr T, = XT,1 - aT.ItxT (53)

is the a posteriori error.

When either of these algorithms is started at T = 0, the rank of the autocorrelation

matrix RT is less than the filter order p. To prevent a singularity from occurring in -T for
T < p, the initial minimum mean squared error is set equal to a small constant 6. This is
equivalent to initializing the algorithm's autocorrelation matrix to bI, where I is the
identity matrix. This initialization results in a slightly biased least squares solution.

Remarks

(1) The inverse matrices in Eqs. (50) and (52) have the effect of equalizing the eigenvalues.
Thus, these fast least squares algorithms are independent of eigenvalue spread in contrast
to the LMS algorithm. The smaller the eigenvalue spread, the smaller the difference
between the LMS and fast algorithms.

(2) If the right hand side of Eq. (48) is premultiplied by A1/2 where

AT0 ... 0

0 ATI . 0

(54)

0 0 ... 1
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and A < 1, then one is concerned with a weighted least squares problem in which the old
data is weighted out. This provides the capability of tracking time-varying processes.
The memory of the algorithm in this case is approximately 1/(1-A) samples. Furthermore,
the initial starting condition of bl becomes insignificant for large T.

(3) The fast algorithms have a problem with numerical stability due to roundoff error
accumulation [8],[40]-[41]. Rescue techniques have been developed [8],[41 to deal with this
problem. Cioffi t8] also developed normalized algorithms which increase the dynamic range
performance of finite precision algorithms, leading to a reduction in the number of rescues
that are required. The choice of the initial value b can also lead to instability [8]. To
remove the requirement for this initial condition, Cioffi developed a fast start-up
procedure for the FTF algorithm based on the minimum-norm least squares solution [1].
This procedure produces the exact least squares solution from T = 0.

(4) Both unncrmalized and normalized recursive least squares algorithms have been
developed for the lattice structures [12],[13],[35],[43],[561,[58],[59. Though more stable
than their transversal counterpart, they can still develop numerical problems [8] and
eventually diverge after continuous operation. One advantage of the lattice structure is the
availability of all filter orders up to some upper limit. This may be useful in some
applications in which the correct order to use is unknown. The disadvantage is the increase
in the number of computations/iteration. Table 2 summarizes the computational effort per
iteration required by several of the recursive algorithms [8].

Table 2

Computational Effort for Linear Prediction

Algorithm Operations

LMS 2p

Fast Kalman 8p, 2 div.

FAEST 5p, 2 div.

FTF 5p, 2 div.

Normalized FTF 9p, 2 sq. roots, 2 div.

Unnormalized
Lattice lip, 3p div.

Normalized Lattice 18p, 3p sq. roots,
4p div.

4.4 A Review of Research Work in Digital Excision

In the previous section, several adaptive algorithms and their respective
characteristics were discussed. With the advent of high-speed digital technology, these
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algorithms are becoming feasible in interference excisors. Many of these algorithms have
been evaluated by researchers either analytically, under computer simulation, or through
implementation.

The earliest work revealed that Wiener filter theory could indeed be applied to the
suppression of interference in DS/SS systems, thus providing significant improvement in
SNR. This revelation spawned a great deal of research in three areas: (a) algorithm
performance under various interference conditions; (b) the development of theoretical
performance models; and (c) filter structures (linear interpolation error filters and filters
employing decision-feedback). This section reviews a large portion of this work in
somewhat chronological order starting with the basic principle.

The filtering of narrowband interference from DS/SS systems is based on the
property that the signal and receiver noise are noncoherent and therefore unpredictable,
,-hereas the interference is coherent over the short term and hence predictable. With the
linear prediction algorithms of Sections 4.1 to 4.3, this coherent component can be
estimated and removed from xn in Fig. 2(b) using transversal or lattice filters. The output
of the filter is an error signal fn consisting of the sum of the filtered versions of the desired
spread spectrum signal, thermal noise and residual interference.

Hsu and Giordano [24] appear to have been the first to suggest this method of
interference removal. Their input signal model was a sequence xn = sn + nn + in where sn
was a chip sample of amplitude ±1, n, was a sample of white Gaussian noise of variance
O', e 2 and in was a sample of narrowband interference with autocorrelation function p(i), i =
0, *1, *2, .... The assumption was made that the signal, noise and interference were
independent from one another and the signal sequence was white with autocorrelation
function

Rss= b(n) = 1, forn = 0, (55)
=0, for n 0.

With these assumptions, the interference becomes the predictable component as now
shown.

Consider a pth order linear predictor as in Eq. (8). Its coefficients are determined
from Eq. (11). The elements of the autocorrelation matrix, R, are given by

ro = E{xn2) (56a)

= 1 + Unse 2 + p(O) (56b)

where p(O) is the interference power, and

r, = Ef5rxri5a
= E{ini .} 57b
= p(i), i = 1,2, ... , p.7c

Equation (57b) reveals that the interference is the predictable component, since the
autocorrelation function ri depends only on p(i).

The output of the excision filter is the error sequence fn defined as
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P
f- Iajx-j (58a)

j=l

= n I a+sr n j in- I aji . (58b)

The first two terms are non-white signal and noise sequences, and the third is the residual
interference. The direct sequence despreader correlates the error signal with the PN
sequence, as shown in Fig. 2(b).

Hsu and Giordano studied the performance of prediction (i.e.,single-sided)
transversal filters with respect to the suppression of interference modelled as the sum of
sinusoids of equal amplitude and random phases. Furthermore, the interference spanned
20% of the chip rate. In their analysis, the filter coefficients were calculated by means of
the LD and Burg algorithms.

The receiver's performance was measured in terms of a signal-to-noise (SNR) ratio
improvement parameter at the output of the PN correlator, i.e., the ratio of the SNR with
whitening, to the SNR without whitening. If the output of the bit detector is the test
statistic U, then the SNR ratio when the excision filter is present can be shown to be equal
to

SNRo- E2IU} (59a)
var{U}

L 2[p F p p p [2L Yaj2 + P(0) - 2 1a1p(j) + I ajaO-k)] + ["nse2+ 0ne2Xajjj=1j= j=1 k_ =
(59b)L2 
(59c)

or 2

where L is the number of chips/bit, ,2 is the overall noise power and the chip rate is 1 Hz.
(It should be noted that for chips of amplitude v, and duration To, the energy per chip E,
is v, 2Tc. The energy per bit Eb is therefore LE,. For chips of unit energy, E{U} = L.)
This noise power consists of three parts, as noted, in the denominator of Eq. 59 (b): a
signal distortion term due to the excision filter, residual interference, and Gaussian noise.

Without the filter, the SNR is simply

SNRro= L 2 (60)
Ljp(O) + Ur1 p2
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Thus, the figure of merit for the excisor is the ratio
= SNRo/SNRno, i.e.,

L(p(0) + nse2)61a)

0, 2

Lp (0)
, for p(O) > >re2. (61b)

i2

Both the LD and BurR algorithms yielded substantial SNR improvement for large
interference-to-signal (I/S) ratios. For example, for L=10, a _,2 = .01, 10 tones and SNRo
= -16 dB (large p(O)), r was approximately 20 dB for the Burg algorithm and 12 dB for
the LD algorithm. The LD algorithm demonstrated a leveling off in q for large I/S,
whereas the Burg algorithm did not. The inferior performance exhibited by the LD
algorithm can be attributed to its characteristic tendency of providing a larger bandwidth
notch compared to the non-windowed least squares algorithms, resulting in more residual
interference. Finally, performance did not vary much with filter order for nigh I/S
conditions, i.e., low ( p = 4) and high order (p = 29) filters produced very similar results
for the case of 10 tones. For 100 tones the difference started to manifest itself, with the
high order filter (p = 29) providing better performance, buggesting the removal of more
interference. In contrast, for low I/S conditions, the performance of the high order filter
was worse than the low order one. This difference in performance was due to the
additional signal distortion introAced by tire extra zeroes in the larger order whiteniiig
filter.

Li and Milstein [38] comparcd the performance of the single-sided (prediction error)
filter to the two-sided (interpolation error) linear phase transversal filter with the same
number of taps as the pre diction filter. The two-sided filter configuration is shown in Fig.
9. Single and multiple tone ii:terferencc %%ere considered.

For the case of a single tone interferer, an expression for SNR improvement was
derived using the filter coeffici.?nts obtained from the exact solution to the W:ener-Hopf
equation. The results showed that when the tone was in close proximity to the carrier
(approximately within .05 Hz for a normalized sampling rate of 1 Hz) and the noise
variance was zero (the ideal case), the two-sided filter provided up to 6 dB additional SNR
improvement over the prediction filter. This was due to the more accurale estimate of the
interference produced by the interpolator. For frequencies further away from the carrier,
the performance difference was not significant, suggesting the interference estimates
produced by the interpolator filter were less accurate, likely due to the dcrease in
correlation between interference samples for increasing frequency offsets.

Analytical expressions were not developed for the multi- tone case because of the
difficult nature of the problem. However, simulations were conducted with the
Widrow-Hoff LMS algorithm. In general, the two-sided filter performed better than the
prediction filter by 3 to 10 dB for I/S's ranging from 2 to 30 dB.
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Li and Milstein [39] also analyzed the performance of a direct sequence QPSK
spread-spectrum system using complex prediction and interpolation error filters in the
presence of pulsed CW interference. They examined the convergence behaviour of the LMS
algorithm during the "on" and "off" portions of the interference, and found that for the
case when the product of the number of taps times the jammer power was much greater
than the sum of the signal and noise powers, i.e., pp() >> S + Unse 2, the taps changed
much slower during the "off" portion of the pulse, thereby maintaining good rejection
capability when the "on" portion of the interference returned. Furthermore, by deriving an
autocorrelation function for the pulsed signal, they were able to calculate the optimum
weights and, therefore, obtain an expression for SNR improvement for the worst case
situation, i.e, when the start of the pulsed interference coincides with the leading edge of a
symbol. This situation generates large interference spikes at the output of the filter, which
gradually diminish as the Interference cancellation begins to take effect. For both filter
types, r demonstrated a large degree of sensitivity to filter order for a small duty factor
(1%), and almost no sensitivity for larger duty factors (10%). This behaviour suggests a
requirement for higher filter orders to attenuate interferers of increasing bandwidths.

Ketchum and Proakis [32] based their work on that of Hsu and Giordano. They
considered: (a) single-band and multiple-band interference; and, (b) two additional
algorithms for estimating the filter coefficients. The interference consisted of either
narrowband Gaussian noise or a sum of closely spaced sinusoids of equal amplitude and
random phase, spanning 20% of the chip rate in a single-band segment or in multiple-band
segments. Besides the LD and Burg algorithms, they also assessed the performance of the
non-windowed unconstrained least squares algorithm [Eq. (33)] and a frequency domain
algorithm based on the FFT. The next two paragraphs provide a brief description of this
latter algorithm.

The frequency domain method relies on the characteristic that the power spectral
density of the PN sequence is relatively flat, while the spectrum of narrowband interference
is highly peaked. The first step in this method is to estimate the power spectral density of
the received signal. The spectral estimate can be obtained, for example, by the Welch
algorithm [65]. Once the power spectral density of the received signal is estimated, the
interference suppression filter can be designed.

The transfer function of the suppression filter for a p-tap filter is defined as the
reciprocal of the square root of the power spectral density at equally spaced frequencies
(0, Rc/p, 2Rc/p, .... , (p-1)R,/p), where R, is the chip rate. This transfer function is
defined as

A(n) 1 - (Pnp
F' , n = 0,1,...,p- (62)

P{-I RC}

S Ip-

where P{ } is the power spectral density function. The term e -j W- (--)n produces a
realizable filter with delay (p - 1)/2 samples. Using the inverse DFT on A(n), the impulse
response (tap weights) of the filter can be calculated. The result is a linear p~hase finite
impulse response (FIR) filter, which yields an interpolation error filter as discussed earlier.
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Theoretical and simulated performance curves were presented for both the time
domain and frequency domain algorithms.

For the time domain algorithms, SNR improvement for single-band interference of
a specified bandwidth was very similar for 4th order and 15th order filters, suggesting that
accurate modeling of the interference was not critical. In contrast, for multiple band
interference, the filter order that was required depended on the number of interfering
bands; at a minimum, one pair of zeroes was recommended per band for BPSK signaling
(or one complex zero for QPSK signaling). Finally, the suppression filters exhibited
little difference in performance between the two models representing the interference, i.e.,
whether it was modelled as narrowband Gaussian noise or as a sum of sinusoids.

They also considered the prediction error filter A(z) in cascade with its matched
filter A*(1/z'), as shown in Fig. 10. This arrangement produces a linear phase filter like the
interpolation error filter, but whose center tap is not equal to unity. This structure also
resembles a maximum likelihood (ML) receiver (to be discussed later), in which the
received signal is whitened by the error filter A(z) and the result is applied to its matched
filter. As an example of its performance, this structure exhibited approximately 5 dB of
additional improvement in performance over its prediction filter counterpart for the case of
I/S = 20 dB.

The frequency domain algorithm also proved to be a viable means of interference
suppression. However, there were two main differences between it and the time-modeling
approaches. First, the notch of the frequency domain filter was not as deep, leading to a
degradation in of a few dB for the example considered. Second, the time domain
modeling techniques required much fewer data samples than the frequency domain
approach to provide good interference suppression. For example, the former provided
suppression approaching that predicted by theory with as few as 50 data samples, whereas
the Welch algorithm required 992 points to obtain similar performance. This latter result
may prove to be unacceptable in an interference environment which changes quickly.

As a final point, Ketchum et al. derived BER expressions based on the assumption
that the noise at the output of the adaptive filter was Gaussian. (Recall from Eq. (59b)
that the noise consisted of three terms, two of which were non-Gaussian.) The resulting
BER curves compared favourably to those obtained from a Monte Carlo simulation,
confirming the validity of the assumption. Furthermore, considerable improvement in
BER performance could be achieved, as noted earlier, by passing the output of the
prediction error filter through its matched filter. For a processing gain of 60,
I/S = 20 dB, 10 sinusoids spanning 20% of the chip rate, and E,/No = 10 dB, the BER
improved from 2x10-, (unmatched) to 1xl0 -4 (matched).

Saulnier et al. [70]-[74] emphasized the implementation of the LMS algorithm as
applied to interference suppression. They considered both charge transfer devices (CTD's)
and digital hardware. Since direct implementation of the LMS algorithm requires two
multipliers per filter tap (i.e., one for the tap weight update increment, and a second to
calculate the signal sample), a burst processing structure was used in order to reduce the
hardware multiplier count. This approach allows implementation of the adaptive
algorithm with only two multipliers regardless of filter order. The cost, however, is a
reduction in bandwidth processing capability by a factor equal to the number of taps.
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In the CCD implementation [70], a stable tone jammer was considered for cases
where I/S = 10 and 15 dB. A 7 chip PN sequence with a 26.3 kHz chip rate (sample rate)
was used along with a 16 tap interpolation filter (8 taps on each side of the center tap).
Empirical BER curves were compared with a theoretical curve based on SNR at the
output of the PN correlator. The results wpre interesting, in that for E,/No = 10 dB, the
theoretical result yielded a BER of 2x10-5 for both interference conditions, whereas the
experimental results were 2x10-3 (I/S=10 dB) and lxl0-2 (I/S = 15 dB). The main reason
for the discrepancy between the theoretical and experimental results appears to be the use
of a 7 chip PN sequence relative to the number of taps in the filter. This would lead to a
certain degree of code predictability for cases in which adjacent bits were equal, resulting in
some code cancellation. Other reasons for the discrepancy would be due to (a) the use of
the LMS algorithm, which only approximates the Wiener-Hopf equation, (b) inaccuracies
due to implementation, and (c) charge transfer inefficiencies in the device.

A digital implementation of the LMS algorithm using the same burst configuration
was assessed [71],[73]. The sampling rate in this case was increased to 177 kHz. In
addition, the input was quantized to 8 bits and both 7 chip and 31 chip PN sequences were
used; the full PN code was contained in one symbol. Three interferer types were examined,
i.e., a 30 kHz stable tone, narrowband Gaussian noise of bandwidths of 1 and 2 kHz
centered at 30 kHz, and a swept tone [73].

With respect to the stable interferers, the effect of interference bandwidth was quite
evident. For the case of I/S=15 dB and Eb/N 0=10 dB, the tone jammer yielded a BF of
2x10-4; the 1 and 2 kHz noise jammers yielded BER's of lxl0-3 and 5x10-3, respectively.
This performance degradation stems from two phenomena: (a) the wider notches created by
the excision filter, which has the effect of introducing more signal distortion, and; (b) a
reduction in the predictability of the interference as the interference bandwidth increases.
In addition, for the single tone case, the effect of the level of interference power for fixed
signal power with and without the excision filter was examined. Without the filter, and
I S ranging from 0 dB to 20 dB, the BER ranged from 2x10 - 4 to 0.5. With the filter
present, BER ranged from lxl0-4 to 5x10-4, indicating the sensitivity of the system without
the filter, to different power levels.

With respect to the swept tone interferer, the objective was to assess the effect of p
in Eq. (37) for several sweep rates. The sweep rates ranged from 0 to approximately .001
Hz/sec. (normalized with respect to the sampling rate of 177 kHz), and U ranged from 0.002
to 0.029. For small p (0.002) and a sweep rate of .001 Hz/sec., the BER was 0.15;
decreasing the sweep rate to 0.0001 Hz/sec., resulted in a slightly less BER, even though
the sweep rate was reduced by a factor of 10. On the other hand, for larger p (0.029) and
the same sweep rates, the BER's were 5x10- 2 and 8x10-3, respectively, confirming the
requirement for a larger convergence parameter in the LMS algorithm in order to better
track the tone.

Iltis and Milstein [25] developed BER expressions in terms of the excision filter
coefficients for two receiver types. The first receiver consisted of a bandpass RF section
followed by an analogue tapped delay line; the second has already been discussed (Fig.
2(b)). Each receiver was subjected to either a tone or narrowband Gaussian jammer and
evaluated in terms of its BER performance. Three design criteria were used to calculate
the filter coefficients.
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The first criterion used an autocorrelation function derived from the combination of
signal, noise and jammer. This refers to the familiar case already discussed in which the
least squares filter whitens the spread spectrum signal, jammer and noise in a proportional
sense, with most of the whitening being applied to the jammer.

The second criterion used only the nc---e and jammer in the autocorrelation function
(it was assumed that somehow the signal could be removed). In fact, the only difference
between the autocorrelation matrices of criteria 1 and 2 was the disappearance of the signal
power from the diagonal elements of R in Eq. (56b) when criterion 2 was applied. The
second criterion was motivated by the structure of the Maximum Likelihood (ML) receiver

3] for the problem of the optimum detection of a signal in coloured noise nnc as shown in
ig. 11. The ML receiver consists of a whitening filter for the coloured noise (in this case

noise plus jammer) followed by a filter matched to the whitening filter and the signal.

The third criterion used tap weights which would produce zeroes of A(z) located on
the unit circle. This is a limiting condition of the analytical equation developed by Li and
Milstein [38] for a stable tone jammer. As the jammer power approaches infinity, the
zeroes of the transversal filter tend towards the unit circle.

The BER results produced by these three criteria were compared to each other for
both prediction and interpolation filters. They were also compared to the performance of
ML receivers derived for tone and Gaussian noise jammers. The ML receivers provided a
benchmark for the other receivers. Of the three criteria, the second criterion, in which the
signal power did not form part of the autocorrelation matrix, yielded the best results,
approaching the performance of the ML receiver. The filter consisted of the prediction
filter followed by its matched filter. This structure is similar to the one proposed by
Ketchum in Fig. 10, in which the filter taps were calculated using the first criterion.
Achieving the performance level of the ML receiver would be difficult in practice unless the
signal could be removed from the input x,,.

Iltis suggested one such approach [25], employing decision-feedback, as shown in
Fig. 12. The spread signal contained in x,,, delayed by one bit (L chips), is removed most
of the time for low BER's. The filter coefficients are thus calculated on the basis of the
jammer and noise. The basic concept will now be described.

Consider a linear interpolator and stationary processes. The interference i-L is
estimated from "p" future and "p" past samples from the sequence YL. The mean squared

value of the error (call this error fL') between Yn-L and its estimate i - is minimized with
respect to the set of 2p coefficients {ai, i = -p, ... 1,1, .. ,p}. The optimum set of
coefficients is then used in the excisor to which xn is applied. Since it was the mean
squared value of the error sequence f-L' which was minimized with respect to the
coefficients ai and not f, the signal s, in the sequence fn will not be as distorted by the
filtering operation.

In another paper by Ketchum [31], three decision feedback schemes were su gested.
The basic principle is illustrated in Fig. 13(a). The concept is somewhat different from

Iltis'. A delayed chip decision §,,, is fed back and subtracted from a delayed version of the
input xn, producing the sequence , = i,-1 + n,,,. This sequence is applied to a linear
prediction filter G(z)= 1 - A(z) (A(z) is the error filter as defined in Eq. (7)) which forms

-35 -



Sn  Fil Mtce Filter
Sn+nnWhitening Ma tched Matched Bit

go Filter Whtonn to Signal Detection

Fitler

FIGURE 11: MAXIMUM LIKELIHOOD RECEIVER FOR THE CASE OF SIGNAL

IN COLOURED NOISE.

- 36 -



-8 ". I p

LTP

n-aL-P Z I.L.P#* n .L,1

X n-pL '\ n--L

FIGURE 12: EXCISION FILTER EMPLOYING DECISION FEEDBACK, WHICH
APPROXIMATES THE MAXIMUM LIKELIHOOD RECEIVER.

-37-



an estimate of the interference i n. The optimum estimate is obtained from the

orthogonality of the error fn (which is the difference between x, and i ,) to the data set
{Y--i, i = 1,2,...,p}. The performance of this method is sensitive to the chip error rate.
Under the condition of no chip errors, the signal distortion term in Eq. (59b)is zero. For
low signal-to-noise-plus-interference conditions, the performance tends to drop off
quickly because of the increase in chip errors. Two other techniques, which provide better
performance at the expense of system complexity, are described next.

An improvement to the scheme in Fig. 13(a) is shown in Fig. 13(b), in which an

evolving estimate for the jth bit d k is quantized at each chip interval kT, and multiplied
by the local PN correlator, yielding improved estimates of the signal. This technique
produces more chip errors near the beginning of the bit interval, but as the bit evolves at
the output of the summer, the chip error rate decreases. The improvement in SNR that
one achieves for this case thus becomes a function of the processing gain. The performance
of this technique rivals that produced by the whitening filter/matched filter combination
discussed earlier (Fig. 10).

Better performance is achieved with the more complex configuration shown in Fig.
13(c). The sequence y,-, with the spread spectrum signal having been "removed" by the
technique in Fig. 13(b), is applied to an interpolation filter R(z). This filter is formed by
first combining the error filter A(z) = 1 + G(z) with its matched filter A*(1/z') and then
removing the center tap of value g'(0). The output of R(z) is the interpolated estimate of

the interference i _i' which is removed from a weighted and delayed version of the input
g'(0)xi.p. As an example of the performance of this approach, for I/S = 20 dB, an
interferer with bandwidth equal to 20% of the chip rate, and a processing gain of 60, this
system experienced increases in r of 14 and 7 dB over the systems in Figs. 10 and 13(b),
respectively.

Other research has been conducted on decision feedback approaches. For more on
this topic, one can refer to the work of Takawira and Milstein [80] and Shah and Saulnier
[75].

To this stage the emphasis in adaptive digital excision techniques has been on
transversal filter structures. Gradient lattice [191,[74] and least squares lattice [66],[33]
structures have also been examined. In [19], the gradient lattice was used in filtering a
stable tone; in [74] it was implemented on a TMS32010 processor.

In [661 several receiver configurations employing least-squares (LS) lattice filters
were assessed with respect to excision and channel equalization. The interference was
coloured noise. Two important issues were addressed: (a) utilizing the LS lattice forward
predictor in series with the backward predictor (prediction filter/matched filter
combination) to remove the interference; and, (b) demonstrating that the LS lattice could
be implemented as a joint process estimator to carry out decision-directed equalization and
interference suppression simultaneously, provided the SNR was low (which can be the case
in DS/SS systems) and the signal spectrum was reasonably flat. It was shown that the
joint process estimator approximated a transfer function consisting of two filters in series,
i.e., a filter matched to the channel's transfer function and a filter for whitening the
coloured noise. When the joint processor estimator was used, ,imulation results for A = i.0
in Eq. (54) produced results which were marginally better than the LS lattice whitening
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filter, even when the LS whitening filter was preceded by the channel's exact matched
filter. However, for A < 1.0, the use of simultaneous equalization/whitening provided
inferior results compared to the LS whitening filter. This result suggests that the joint
process estimator is more sensitive to the misadjustment error for cases when A < 1.0 (see
Section 4.5.2 for the definition of misadjustment error as applied to the recursive least
squares algorithm).

4.5 Adaptive Filtering of Stable and Swept Tones

This section presents theoretical and simulation results of the application of least
squares filters to the removal of interference from a spread spectrum system. Some of these
results are presented in [331. First the PN spread spectrum communication model is
presented, followed by the performance of the system with respect to the filtering of stable
and swept tones.

4.5.1 PN Spread Spectrum Communication System Model

The communications model used in this section and shown in Fig. 14 is the
low-pass equivalent form of an undistorted BPSK signal with additive white Gaussian
noise. The PN sequence is modelled as rectangular chips of amplitude + 1 and a chip rate
R, = 1 Hz. The information bits dk are likewise rectangular, of amplitude * 1, and of
duration Tb = L/R, where L is the number of chips per bit. The signal is corrupted by
white Gaussian noise, n,, of variance 0ne,2 = No,/2, and interference in of power p(0). The
effect of the integrate-and--dump circuit on the interference as shown in Fig. 2(b) has not
been included in the model.

Two adaptive filter algorithms are considered, i.e., the block least squares and
recursive least squares algorithms. The block algorithm calculates a set of tap coefficients
for a transversal filter using the software in [2]. (An alternative would have been to use the
software in [48],[491). The recursive algorithm lisLed in Table 3 calculates a set of forward
and backward reflection coefficients for a lattice least squares filter, as well as the forward
and backward prediction errors.

The filtered data are applied to the PN correlator whose output is summed and
sampled every L chips.

For the BLS algorithm, two FIR filter transfer functions will be considered, i.e.,
A(z) and A(z)A*(1/z*), where A*(1/z') is the matched filter of A(z). This latter
conliguration causes a delay of p samples, where p is the filter order of A(z). Thus, the PN
sequence in the correlator must be delayed by p chips for this case.

As discussed in Section 4.3.3, the RLS algorithm can have associated with it a
weighting parameter or "forgetting factor" A, where 0 < A < 1. The effect of this parameter
on the interference rejection capability of the adaptive filter for stable and swept tones will
be examined. Finally, the matched filter for the lattice RLS algorithm is obtained by
feeding the forward prediction error from the ith lattice stage into a second lattice having
the same reflection coefficients. The output is the backward prediction error of the ith
stage of that filter as shown in Fig. 15. The output is delayed by i samples. (If one was to
use the FTF least squares algorithm, for example, then the matched filter would be the
backward predictor.)
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4.5.2 Stable Tone Performance

The performance of the pre-windowed RLS lattice algorithm is examined with
respect to a stable tone located at 0.2 Hz. The objective is to evaluate the effect of the
filter order p and forgetting factor A on the amount of interference suppression that the
algorithm can provide.

The results are presented in terms of: (a) root locations of the whitening filter on
the z-plane; (b) the average attenuation at the inte.ference frequency; and (c) bit error
rate performance. To determine the root locations of the whitening filter, the coefficients
of A(z) must be calculated from the lattice filter. This can be done using the algorithm
listed in Table 4 1121,[13] in conjunction with the one listed in Table 3. The algorithm in
Table 4 is a more generalized version of the LD algorithm, developed for the case of
pre-windowed signals. All filter orders for A(z) up to and including p are determined.
The coefficients of each order are r-resented as {ao(0)}, {ao(i), a1(1)}, {ao(p), al(p), ... , ap(p)}
where a3(0) = 1. Once the coefficienLs of A(z) are known, the attenuation at the tone
frequency can be calculated.

The tone is defined as

in = Acos(2rxfn + 9) (63)

where A = 1.0, ff = 0.2 Hz, and 0 is a uniform random variable between 0 and 2r radians.
The interference-to-noise ratio is 20 dB.

Figs. 16 and 17 show the distribution of the roots of A(z) for filter orders ranging
from p = 2 to p = 8. Corresponding to each filter order is a weighting parameter of either
1.0 or 0.9. Table 5 lists the average attenuation at the tone freq'!ency achieved for each
situation. This average was calculated on the basis of 150 sample points, excluding the
initial transient. The same data were used in each test.

There are two observations that can be made from Figs. 6 and 17, and the data in
Table 5:

(a) for A = 1.0, the attenuation improves as the filter order increases; it
increases steadily until p = 6; at p = 8, there is no change. One pair of
zeroes is dedicated to removing the tone, the others are contained within
the circle and -irovide little attenuation at the frequencies at which they
are located as determined by their distance from the unit circle.

(b) for A = 0.9, the attenuation is less, and does not improve with increasing
order. The roots wander around more, and in many cases stray towards
the edge of the unit circle, suggesting that deep notches would be created
at these extraneous frequencies.

These observations lead to the conclusion that the RLS algorithm is expected to perform
better for the case of A = 1.0 and a filter order of 6 or 8. This latter point makes sense,
since a sinusoid in noise is best modelled as an autoregressive moving average (ARMA)
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Table 3

Unnormalized Pre-Windowed Least Squares Lattice Algorithm

Input parameters:
p = maximum order of lattice
XT = data sequence at time T

A = exponential weighting factor

Variables:

RfT, Riw = sample variances of forward/backward errors

Ailw = sample partial correlation coefficient

7Fi,T = 1 - 7 iT = likelihood variable

ei,T' ri,T -" forward/backward prediction errors

K1T, KbT = forward/backward reflection coefficients

These computations will be performed once for every time step (T=O, • • ,Tmax).

Initialize:
eo T rOT= XT

Rf =R b = AR'TI + 2
0,T 0 ,T D,- +- X

Repeat for i = 0 to min (pT) - 1
Ai-1,T = AAi.,1T_ 4+ eiTriTI / 7 i-,T-I

7 i-.T - riT / R,'

K I.11.T Ai~l,T / R1 1T-

efI, =elT - .

Ki.,T A i#.,T / RbIJ
ri.,,T = ri,T-1 - Kf.lTei T

b bf

RilT = Ri T_ - Ai-I,TKI T
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Table 4

Computing Predictor Coefficients from the Lattice Parameters

Initialize:

b'(-') 0 for i ,. .P-1

C - 0

Outer Loop

Repeat for i = 0... p

aoM =- b o(i) = 1 i-0

a0(i) = b (i) = 0 i >0

Inner Loop

Repeat for =0, .z.p-1

bi(i)- b j(i) - rjcj(i)/7.0C

cj.(i) = cj ( ) - rjbj(i) /Rjb

aidi) = aj(i)- Kj~lbb(i-)
bj+i10) = bi(i-1) - Kjdlfaj(i)

End of Inner Loop
End of Outer Loop

Table 5

Attenuation Level of Single Tone

A Filter Order Attenuation (dB)

1.0 2 47
0.9 2 42

1.0 4 53
0.9 4 42

1.0 6 57
0.9 6 42

1.0 8 57
0.9 8 41
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process [4],[29], which is equivalent to an AR process of infinite order. The effect of the
additional roots is to model the background noise (two of the roots are dedicated to the
tone). For p = 2, the filter must balance its resources to model both signal and noise.
Thus its notch will not be as deep. As p increases, more resources are allocated to model
the noise.

For values of , less than 1.0, the effective memory of the adaptive filter is reduced,
so that there is not as much data averaging. This exponential window also leads to
fluctuations in the filter coefficients, which increase the movement of the roots of the
rejection filter.

The above observations for A = 1.0 do not necessarily mean that the excision filter
will perform better as one goes to higher and higher filter orders. Recall that the objective
of the excision filter is to whiten the sum of signal, noise and interference. As the filter
order increases, more signal distortion can be expected and at some point will become a
significant contributor to noise in Eq. 59(b). It thus becomes a tradeoff between the three
noise terms in Eq. (59b) as to which one will dominate.

Bit Error Rate Performance

This next part deals with the bit error rate performance of the RLS algorithm as
applied to a stable tone defined in Eq. (63). Both theoretical and simulation results will be
presented. The model for calculating the theoretical BER is shown in Fig. 18. This model
is similar to the one in [26] in which the LMS algorithm performance was assessed. This
type of model is required or the RLS algorithm when A < 1.0 which, as mentioned above,
leads to filter fluctuations and an increase in noise, known as the excess noise.

The average mean squared value of this excess error is [10]

,excess = E{A atR Aa} (64a)

_- --- Tr { I + E(p,12) }C.Pt (64b)

where Aa is the vector of filter misadjustments due to the exponential window, R is the
autocorrelation matrix of the data, Tr refers to the trace onerator, Eopt is the optimum
mean squared error obtained from the Wiener-Ilopf solution, I is the identity matrix, and
Pn is a zero mean fluctuation matrix. A simplification [10] of Eq. (64b) is

Eexcess ::: 1 - ){1 + I - )A  } t(5
"-+1 +1+ P&gopt (65)

where 't = var(x, 2)/var 2(x,). If xn, is a Gaussian process, then 7 = 2.

To determine the BER for the system in Fig. 18, the test statistic at the output of
the bit detector must be determined. This test statistic is

L
U = plp(fnl + fr,.xcess) (66a)

n=1
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L L L L

I PnXn I P I ajxr,1 + X Pnfnexcess. (66b)

n=1 n=1 i=1 n=1

Letting xn = Sn + in + nn, and assuming that the excess error is zero mean and the chips
are independent samples then E{U} = L in Eq. (66b). The variance is similar to the
denominator in Eq. (59b5 except for the term due to the excess error. Thus,

P P P p
var(U) L aj2 + p(O) - 2 ajp(j) + I ajakp(j-k) + ame 2 + Tnse2Xaj2 + Eexcess

j=l j=1 j~lkrl j=l

= (67)

If the assumption is made that U is a Gaussian random variable, with var(U) = u2, then
the probability of a bit error is defined as

2

Pe J-L e1 dz (68)

where SNRo = L2 / ,2. (excess is a function of 7, which can be calculated from Eq. (65).
For the process under consideration,

var 2(x.) = [1 + 0,. 2 +p(0)]2 (69a)

var(Xn2) = 2("nse2 (rse 2 + 2) ± 4p(O){1 + ",'(2} + p2(0). (69b)

The theoretical BER curves as determined from Eq. (68) are shown in Fig. 19. The
conditions here correspond to a forward prediction filter without its matched filter, and
filter orders of 2, 4, 6, and 8. The weighting factors were A = 1.0, 0.95, and 0.90. The
frequency of the interference was offset from the carrier by 0.2 Hz. The results show that
performance improves as the filter order increases. After close examination of Figs. 19(a),
(b), and (c), one can see the effect of the excess noise as A decreases.

Computer simulations of the communications model depicted in Fig. 14 were also
carried out. They are based on the following parameters:

Signal-to-Interference Ratio (SIR): -20 dB
Processing Gain: 20
Sampling Rate: 1 Hz
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Slightly more than 25000 random bits of information were generated, yielding over
500 thousand chips after multiplication by a random PN sequence. To each signal sample
(chip) was added a sample of white Gaussian noise n,, and interference in. The noise
variance was determined from the Eb/No of interest, i.e., tnse2 = L/(2(Eb/No) where N. is
the single-sided noise power spectral density. The amplitude of the interference was set
equal to 14.142 to provide an SIR/chip of-20 dB. The BER was determined by comparing
the bits "transmitted" to those "received".

The results are shown in Fig. 20. For A = 1.0 and 0.95 [Figs. 20(a) and (b)] there is
good agreement between theory and simulation. However, for A = 0.90 (Fig. 20 (c)), the
simulated results are more pessimistic, indicating that the approximation to Eq. (64b)
(namely Eq. (65)) may be invalid for such low values of A. One would therefore have to
use the more general Eq. (64b) for a more accurate estimate of the excess error.

The next section considers a swept tone interferer. The performance of the BLS and
RLS algorithms are presented in terms of their tracking ability and the bit error rate at the
output of the bit detector. The results were obtained from computer simulation.

4.5.3 Swept Tone Performance

The interference is modelled as a frequency modulated waveform of the type

t

i(t) = Acos[2Tfft + df m(r)dr + 0] (70)

0

where bf is an offset frequency from the spread spectrum signal carrier, m(r) is the
modulating signal, d is the frequency deviation constant of the modulator in
radians/second/volt [85], and 0 is an initial random phase.

To demonstrate the tracking behaviour of the BLS and RLS adaptive filters, a
swept tone with forward and backward sweep rates of 0.001 Hz/sec was modelled using Eq.
(70). A section of m(r) is shown in Fig. 21(a), sweeping between 0.1 and 0.3 Hz, and ff is
0.2 Hz. The amplitude of m(7-) was set to unity and d was chosen to be 0.628
radians/second/volt. The peak frequency deviation Af for this case was 0.1 Hz. The
interference-to-noise ratio was set at 20 dB. The spread spectrum signal was not included
in this set of tests.

The BLS method was examined first. For each block of data, the set of
autoregressive parameters {ai, i=1,2,. • .,p, cp2} were obtained along with the roots of A(z),
which represent the locations of the notches created by the filter.

Figures 21(b) to 21(d) show three examples of the tracking capability of a fourth
order BLS filter A(z). The number of samples per block is, respectively, 100, 50, and 10.
Only the positive frequency is plotted. The horizontal lines correspond to the frequencies
of two of the roots of A(z) in the upper half of the complex z-plane, the other two roots
being in the lower half plane. The location of the horizontal lines indicates the position of
the notches for the particular block of data processed to produce the adaptive filter
coefficients.
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For the case of 100 samples per block, Fig. 21(b) shows several instances when the
notch filter is outside the range of the tone. One would therefore expect poor tone
attenuation during these times. Reducing the number of samples per block to 50 (Fig.
21(c)) improves the tracking capability somewhat, but at times only two out of the four
roots follow the tone. Fig. 21(d) shows good tracking of the tone when only 10 samples per
block are used. In this case, one pair of roots track the tone, whereas the other two are
located at 0.0 and 0.5 Hz most of the time, i.e., on the real axis of the complex z-plane.

For the RLS lattice algorithm, the samples were processed recursively using the
prewindowed lattice algorithm listed in Table 3. The filter parameters of A(z) for this
lattice were obtained from the algorithm listed in Table 4.

Figures 22(a) and (b) show the tracking capability of the RLS lattice filter for the
case of A = 0.90 and filter orders of 2 and 4, respectively. As in the BLS case, for a fourth
order filter, two of the roots in Fig. 22(b) track the tone, whereas the other pair wander
around, similar to the case for the stable tone.

These results lead to some preliminary conclusions concerning the BLS and RLS
filters. First, in the case of the BLS filter and a fairly fast sweeping tone covering a large
percentage of the spread bandwidth (in this example, the swept tone covered a bandwidth
equal to 20% of the chip rate), as few samples as possible per block should be used to
achieve reasonable tracking and filtering. Second, for both the BLS and RLS algorithms, a
second order filter appears to be more appropriate, since the additional roots from higher
order filters have a tendency either to locate themselves on the real axis or elsewhere.
These extra roots will introduce additional spectral distortion in the spread spectrum
signal. The degree of distortion would depend on the depth and quantity of the notches.
As demonstrated for the stable tone interferer, for decreasing values of A, the roots were
less confined to one spot in the interior of the unit circle and had a tendency to wander
quite significantly. The notch depths would be enhanced if the higher order filter was
cascaded by its matched filter A( 1/z*). For larger values of A, the tracking capability Of
the filter would degrade, i.e., a larger lag would be introduced [Fig. 22(c)]. Thus, the
amount of interference attenuation achieved would be less, thereby increasing the BER. As
A approaches 1.0 all the roots contribute to the filtering; they also exhibit much less
mobility [Fig. 23(a)]. In the limit, when A = 1.0 the roots tend to become stationary [Fig.
23(b)]. In other words, the RLS algorithm approaches the Wiener-Hopf solution.

Bit Error Rate Performance

The simulation conditions were the same as those used for the stable tone. Figs.
24(a) and (b) show the BER's for the BLS method for second order (p = 2) and fourth
order (p = 4) filters A(z), respectively; the matched filter results are also included here. In
these and sub sequent figures, the BER when the excision filter was not present is not
shown; however, for this case it was approximately 0.4 for all of the EbNo's considered.

In general, the BER improves as the block size decreases, confirming what was
observed previously when the BLS algorithm's tracking capability was explored (Fig. 21).
First consider the results for N = 100. When the matched filter was not used, there is a
slight improvement in performance in going from p = 2 to p = 4, suggesting that the
increased bandwidth provided by the higher order filter suppressed more of the interference
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(note that from Fig. 21 all the roots took part in the filtering process). When the matched
filter was included, the performance improved significantly, particularly when the filter
order was increased to p =-4, indicating a much larger reduction in the interference for this
case.

For N = 50 and no matched filter, the BER results reveal very little difference
between the second order and fourth order filters. Referring to Fig. 21(b), we see that for p
= 4 there is a tendency for two of the roots to track the tone and the other two to
sometimes wander around. Furthermore, because of the almost imperceptible difference
between the results for p = 2 and p = 4, one comes to the conclusion that the wandering
roots do not introduce much signal distortion, that the noise in Eq. (59b) is dominated by
the residual interference. However, the matched filter results indicate slightly inferior
performance for the fourth order filter, suggesting that perhaps signal distortion is starting
to manifest itself. For N = 10, this effect is more evident.

Figures 24(c) and (d) illustrate the BER performance for the RLS lattice filter. The
performance of both the second and fourth order filters for A = 0.95 are shown in Fig.
24(c). Consider first the case without the matched filter. The results exhibit a
degradation in performance for the fourth order filter, indicating an increase in the noise at
the output of the adaptive filter. This noise is likely dominated by the residual
interference. When the matchcd filter was present, the performance between the two cases
was very similar, suggesting two things: (a) they both removed about the same level of
interference; and, (b) a filter order of p = 4 did not appear to increase the other noise
terms (signal distortion, Gaussian noise, and the excess noise due to filter coefficient
fluctuation). More tests using higher order filters would have to be conducted to examine
this problem in more depth.

Similar comments hold for the results in Fig. 24(d) for the case of a second order
filter, and A = 0.90 and 0.95. Recall from Fig. 22 that increasing resulted in an increase
in the lag between the predictor and the interferer's modulating signal. This would result
in an increase in the residual interference and, therefore, an increase in BER as shown
when the matched filter was not present. With the matched filter, the effect of the lag is
not as noticeable.

5.0 CONCLUDING REMARKS

This report has presented a review of the research which has been conducted in the
area of jammer suppression in DS/SS systems. Most of the emphasis has been on digital
adaptive schemes employing linear and non-linear (i.e., decision-feedback configurations)
filtering. Furthermore, the majority of effort had been on the filtering of single or multiple
tones, as well as narrowband coloured noise. Very little work had been done on
interference of the FM-type. The latter part of this report shed some light on the
problems associated with filtering a swept tone interferer.

The results suggest that for a single swept tone, a second order filter will achieve
better performance than higher order filters, since the latter may introduce additional
signal distortion. This was particularly evident with the BLS algorithm and small block
sizes. For the RLS algorithm, it was shown too that a second order filter is adequate
enough for the suppression of this type of interference; signal distortion did not appear to
present much of a problem for a fourth order filter. One would expect a degradation in
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performance for higher filter orders and A < 1. To be more conclusive, additional work
would have to be conducted in this area. Also indicated was the sensitivity of BER to
changes in A, especially when the matched filter was not used. Finally, the results
produced by the BLS and RLS algorithms contrast those of the stable tone in which
increasing the filter order improved the performance.

The tracking examples involving the RLS algorithm exhibited a lag between the
modulating signal and the e-timate. This lag is a function of A and suggests that an
artificial delay could be imlr sed on the data to compensate for it. One would therefore
expect an improvement in performance if this were done.

From the results presented for the swept tone, the block and recursive least squares
second order filters can be viewed as tunable notch filters or, conversely, as frequency
demodulators if one calculates the roots of the excision filter over time. This concept opens
the door to other possible filtering schemes.

With this in mind, the author has developed a new digital adaptive algorithm which
is based on an extended Kalman filter [68]. Kelly and Gupta [30] and Polk and Gupta [63],
using Kalman filtering theory, developed a digital PLL which has performance
characteristics similar to that of an analog PLL. This model forms the basis of a new
excision algorithm to be described in a subsequent report. Their model has been modified,
and extended to render it adaptive. In particular, the performance of the new algorithm
will be presented for the case of FM interferers such as the type considered in this report.



6.0 GLOSSARY

AR - Autoregressive
BER - Bit Error Rate
BLS - Block Least Squares
BPSK - Binary Phase Shift Keyed
BW - Bandwidth
CCD - Charge Coupled Device
CTD - Charge Transfer Device
DFT - Discrete Fourier Transform
DS/SS - Direct Sequence Spread Spectrum
E{U} - Statistical Expectation of the Random Variable U
Eb/No - Energy per Bit-to-Single-Sided Noise Power Spectral Density Ratio
ESM - Electronic Support Measures
FAEST - Fast a posteriori Error Sequential Technique
FFT - Fast Fourier Transform
FIR - Finite Impulse Response
FI - Frequency Modulation
FTF - Fast Transversal Filters
IF - Intermediate Frequency
I/S - Interference-to-Signal Ratio
LD - Levinson-Durbin
LMS - Least Mean Square
LPF - Low Pass Filter
LS - Least Squares
All - Mixer
M2 - Mixer
ML - Maximiln, Likelihood
PLL - Phaoe-Locked Loop
PN - Pseudo Noise
QPSK - Quadrature Phase Shift Keyed
RLS - Recursive Least Squares
SAW - Surface Acoustic Wave
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